Dear Sir or Madam

As you may learn from various studies that you may access by the enclosed links, mycobacterial infections such as tuberculosis, remain a major cause of AIDS-defining diseases. As MD Lawrence Broxmeyer has stated in 2003 in his book "What the discoverers of HIV have never admitted", the HIV discoverers did not do biopsies to detect mycobacterial infections in the patients with recurrent infections, from whom they took cells from the lymph nodes, to be brought into cell cultures at the Pasteur Institute. As we cannot find any references to biopsies in their original papers on the isolation of HIV, we must conclude that they did not do biopsies to detect mycobacterial infections in the patients from whom they had taken cells, when they postulated the lymphadenopathy associated virus (LAV) and the human T-cell leukaemia retroviruses HTLV-I, HTLVII and the HTLVIII, later termed as "Human Immune Deficiency Retroviruses" (HIV), which then were detected by means of an antibody-test developed by Luc Montagnier and Robert Gallo, termed as HIV antibody test".

From all of this and a big number of studies, we have to conclude that this HIV-antibody test detects reactive products of bacterial, fungal and mycobacterial infections. A fact that also has been demonstrated by various trials carried out in recent years, which showed that a positive result in HIV-tests is occurring at infections by various kinds of mycoplasma, bacteria, mycobacteria, fungi and parasites, many of which nowadays show genetic mutations going along with resistance to antibiotics, pesticides and herbicides. In this way the detected entity "HIV" being most likely a product of mycobacterial, bacterial and fungal and parasite infections has been declared to be a by itself pathogenic sexually transmittable retroviral entity, causing the severe course of more than 30 infectious diseases that define the "acquired immune deficiency syndrome (AIDS). The HIV testing permitted since the mid 1980ies to fade out the fact, that mycobacterial infections such as Tuberculosis, thought to be eradicated in western countries, had infected various populations in cities such as Paris, New York, London and San Francisco. By means of this antibody-test various kinds of infections were traced back to the newly discovered HIV-retrovirus.

On to this day mycobacterial infections play a major role for AIDS-defining diseases and for an enhanced "HIV-viral load". As the formula of the PCR-test to detect the HIV-viral load has never been published by its producers, no-one knows exactly what entities are detected by it as being HIV-specific. The WHO, considering the HIV to be the central cause of AIDS-defining diseases, instead of making specific testing and specific treatment against mycobacterial, bacterial and fundal infections available to people affected worldwide, concentrated all its activities in the field of
AIDS in the last 30 years on the inhibition of HIV-transmission and on bringing anyone with a positive result in HIV-testing into “antiretroviral therapy”.

Mycobacteria, which live inside of protozoans (such as amoebae), in animals and humans are also normal inhabitants of a wide variety of environmental reservoirs such as natural waters like lakes and rivers, municipal water facilities and soils, where they accumulate resistance to various antibiotics and biocides such as herbicides and pesticides. In the human body mucosa are important sites for the uptake, living and excretion of mycobacteria. Damage to the gut flora, producing substances for the building of the cells in the gut mucosa and for the protecting gel on it, due to repeated administration of antibiotics, facilitates mycobacteria to cross the mucosal barriers and enter the gut associated lymphatic tissues (GALT), where they activate a cascade of immune reactions leading to a decline in T-4 cells, a phenomenon which has been attributed to the Hi-retroviruses. The frequent use of large-scale antibiotics such as TMPSMX blocks the formation of the enzyme dihyropholate reductase, needed for the building of tetrahydropholate, used in the liver for the building of glutathione molecules necessary for the stepwise reduction and transportation of oxygen into the cells, where they are used for the building of the energy carrying molecule ATP, essential for all body functions including the containment of mycobacteria inside of cells and for building of tetrahydrobipterin (TH IV), necessary for the synthase of nitric oxide gas (NO) used by macrophages for the defence against mycobacteria and for the induction of a dormancy programme in them, which keeps them from continuous activation and genetic mutations, occurring frequently after administration of antibiotics. (Luc Montagnier, the „discoverer of HIV“, speaks in his presentation as Nobel price laureate about oxidative stress due to air pollution and of pollution in nutrients as being the cause of immune deficiency. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2008/montagnier_slides.pdf)

The central role of mutated, antibiotic resistant mycobacteria for AIDS-defining disease and its emergence has been faded out in the last 30 years by means of the HIV-AIDS theory, so that the world-wide emergence of multi-resistant mycobacterial infections is not known exactly today.

The Simian Immune deficiency retrovirus (SIV) found in African rhesus macaques, which has been considered to act in similar manner as the HIV in humans and was investigated in various trials to better understand the alleged pathogenic action of the HIV retrovirus in humans, is occurring only, as studies show, at infections by mycobacteria coming from water, food and from soils, whilst the occurrence of AIDS-related symptoms in the test animals is closely linked to these mycobacterial infections. This well documented fact did not keep the “HIV discoverer” Françoise Barré Sinoussi from repeating at the World AIDS conference in Melbourne her theory that the HI-retrovirus ages ago, has passed over from “African monkeys to the humans”. Despite billions of public research money invested, the retroviral HIV-research did on not bring more efficient treatment to the people affected.

The effect of the “antiretroviral therapy” (ART) in AIDS-patients occurs due to its cell-toxic effect on bacteria, fungi and parasites. In the “immune reconstitution inflammatory syndrome (IRIS) occurring under “antiretroviral” therapy, various “masked” mycobacterial infections turn up again. The treatment of mycobacterial infections such as tuberculosis and of other bacterial and fungal infections by means of ART cannot terminate the infections by genetically mutated, antibiotic resistant strains (“super-antigens”) but diminish its pathogenic effects on the organism, so that with a temporary decline in the “HI-viral load” the number of T-4 cells is rising again.

Instead of activities to stop the transmission of environmental mycobacteria that cause transmittable infections in humans and consequently a positive result in HIV-testing, for example by the construction of modern drinking water facilities, and activities to support the defensibility against mycobacterial infections by the supply of nutrients to people affected, and of activities to limit the use of antibiotics in humans and in animals, to prevent the
emergence of antibiotic resistant strains, the WHO concentrates all its activities in the field of AIDS since 30 years on inhibiting the transmission of the postulated HIV-retrovirus by means of safer-sex-rules, caesarean birth and the administration of antiretroviral treatment to HIV-test-positive mothers and their new-born children. The pre- and post-exposition prophylaxis against the transmission of the HIV-retrovirus by bactericidal substances such as Truvada, is now recommended to replace the earlier declared safer-sex-rules, which after WHO officials, could not stop the emergence of the HIV. Apparently they are meant to prevent the transmission of “HIV”-inducing bacteria, fungi and parasites. These bactericidal substances, which such as nucleoside analogue drugs, cause lasting damage to the mitochondria and thereby to the kidneys, the bone marrow, the brain and inner organs should cost $40 per day and person. An amount that only few people in this world could afford.

In regard of this situation, we demand, that testing for mycobacterial infections is made available world-wide and that anyone receiving a positive result in HIV-testing can also do specific testing on mycobacterial infections and testing to know the pathogenic strains one is carrying and one can transmit to others and their resistance to certain antibiotics which can be detected by means of specific PCR-testing. For the search of pathogens causing mycobacterial infections the delayed type hypersensitivity multi test showing the cutaneous reaction to a certain number of bacterial antigens should be made available again worldwide. (The availability of this test and its production in license was interrupted by its patent holder, Sanofi-Mérieux, in the course of its trials with a HIV-vaccine in 2008. Since then only DTH-tests to fewer antigens are available for single countries, with the effect that mycobacterial infections and the defence ability against it cannot be detected anymore clearly in single areas such as East Asia, Southern Africa or Latin America.

In regard of the damaging effects and complications occurring under of ART we demand, that anyone receiving ART also receives treatment to diminish the toxic side-effects occurring with it.

Study Group AIDS-Therapy, Zurich, Switzerland

Felix de Fries

Book Review by Felix de Fries on Lawrence Broxmeyer's: AIDS, What the discoverers of HIV have never admitted:

In his book, internist and medical researcher Lawrence Broxmeyer MD, who has appeared in the Journal of Infectious Diseases and was on staff at New York affiliate hospitals of SUNY downstate, Cornell University and New York University for fourteen years, describes step-by-step, the findings of over 100 years of tubercular mycobacterial research — including its cell-wall-deficient forms, their paths of transmission, and their paramount role in the genesis of AIDS — which took off in the early 1980’s. He then shows, based on a review of such original research data, how basic thoughts and concepts were side-stepped and not taken into consideration by the retrovirologists Luc Montagnier, Françoise Barré Sinoussi and Robert Gallo when they postulated the human immunodeficiency retrovirus as AIDS sole pathogenic entity. Besides the omissions and lack of a sufficient differential diagnosis in the original lymph-node-biopsy on the first young male AIDS patient suffering from lymphadenopathy, this interesting little book also brings up the spectre of warnings issued with regard to tubercular sexually transmitted disease issued just before the pandemic, as well as the research that validated this. Also discussed is the singular immunosuppressive effect of an atypical infection joining an old or dormant tubercular focus in the body. Broxmeyer wants us to remember that approximately 70% of HIV tests cross-react positively to tuberculous mycobacteria, a fact which early HIV investigators Essex and Kashala were the first to point out.

Overall, the book is a must read, and a pretty intriguing one at that. In addition it is a unifying experience for anyone doubting that the immunosuppression from typical and atypical tuberculosis and not “HIV” is the cause of the approximately 30 AIDS-defining diseases, which whether HIV-positive or not, we are being told “defines” AIDS.
LINKS/REFERENCES:

11. Isolation of a T-lymphotropic retrovirus
http://reaids.com/aliveandwellsf.org/index.html

12. Detection of IgG antibodies to lymphadenopathy-associated virus in patients with AIDS or lymphadenopathy syndrome [PDF]
von
ufpr.br
http://people.ufpr.br/~microgeral/arquivos/2013FUNDAMENTOSBarreSinoussi.pdf

14. Health Impacts of Environmental Mycobacteria
http://cmr.asm.org/content/17/1/98.full.pdf+html

http://adc.bmj.com/content/72/2/165.full.pdf

16. The Mycobacterium avium complex.
http://www.nature.com/icb/journal/v77/n4/full/icb199947a.html

17. Mucosa-associated lymphoid tissues as sites for uptake, carriage and excretion of tubercle bacilli and other pathogenic mycobacteria
http://vdi.sagepub.com/content/8/3/351.short

18. The Pathophysiology of Disseminated Mycobacterium avium Complex Disease in AIDS
http://jid.oxfordjournals.org/content/179/Supplement_3/S461.full

19. The Burden of Mycobacterial Disease in Ethiopian Cattle: Implications for Public Health
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005068

20. Tuberculous lymphadenitis associated with human immunodeficiency virus (HIV) in Uganda.
http://jcp.bmj.com/content/41/1/93.full.pdf

21. Mycobacterium avium complex, an emerging pathogen in Massachusetts.
http://jcm.asm.org/content/22/1/9.full.pdf

22. Clinical manifestations of nontuberculous mycobacteria infections.

23. Mycobacterium avium infection in HIV-1-infected subjects Increases monokine secretion and is associated with
enhanced Viral load and diminished immune response to viral antigens.

24. Health Impacts of Environmental Mycobacteria

http://cmr.asm.org/content/17/1/98.short

25. Latent Infection as a Source of Disseminated Disease Caused by Organisms of the *Mycobacterium avium* Complex in Simian Immunodeficiency Virus-Infected Rhesus Macaques

http://jid.oxfordjournals.org/content/187/11/1748.full

26. Mycobacterial Disease, Immunosuppression, and Acquired Immunodeficiency Syndrome

http://cmr.asm.org/content/2/4/360.full.pdf

27. The Mycobacterium avium complex.

http://www.nature.com/icb/journal/v77/n4/full/icb199947a.html

28. Model for immune responses to *Mycobacterium avium* subspecies paratuberculosis in cattle [HTML]

von asm.org

Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals

Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals – A systematic review and meta-analysis [PDF] von researchgate.net

Delayed-type hypersensitivity (DTH) test anergy does not impact CD4 reconstitution or normalization of DTH responses during antiretroviral therapy

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916671/

Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals – A systematic review and meta-analysis

Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of *Staphylococcus aureus* and *Staphylococcus epidermidis* http://aac.asm.org/content/44/2/231.full

Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

http://cmr.asm.org/content/19/1/165.full.pdf

1993 Revised Classification System for HIV Infection and Expanded Surveillance Case Definition for AIDS Among Adolescents and Adults

http://cid.oxfordjournals.org/content/17/4/802.short

Detection of Macrolide Resistance in *Mycoplasma pneumoniae* by Real-Time PCR and High-Resolution Melt Analysis http://aac.asm.org/content/52/10/3542.full

35. Multiple Drug-Resistant *Chlamydia trachomatis* Associated with Clinical Treatment Failure

http://jid.oxfordjournals.org/content/181/4/1421.long

29. Non-tuberculous mycobacterial lymphadenopathy

http://adc.bmj.com/content/72/2/165.full.pdf
30. Mycobacterial disease, immunosuppression and acquired immunodeficiency syndrome
http://adc.bmj.com/content/72/2/165.full.pdf

31. Isolation of a T-lymphotropic retrovirus.
http://reaids.com/aliveandwellsf.org/index.html

34. Non-tuberculous mycobacterial lymphadenopathy
http://adc.bmj.com/content/72/2/165.full.pdf

35. The Mycobacterium avium complex.
http://www.nature.com/icb/journal/v77/n4/full/icb199947a.html

36. Mucosa-associated lymphoid tissues as sites for uptake, carriage and excretion of tubercle bacilli and other pathogenic mycobacteria
http://vdi.sagepub.com/content/8/3/351.short

37. The Pathophysiology of Disseminated Mycobacterium avium Complex Disease in AIDS,
http://jid.oxfordjournals.org/content/179/Supplement_3/S4_61.full

38. Tuberculous lymphadenitis associated with human immunodeficiency virus (HIV) in Uganda.
http://jcp.bmj.com/content/41/1/93.full.pdf

39. The Spectrum of HIV-related Disease in Rural Central Thailand

40. Clinical manifestations of nontuberculous mycobacteria infections

41. Mycobacterium avium infection in HIV-1-infected subjects Increases monokine secretion and is associated with enhanced Viral load and diminished immune Response to viral antigens.
42. Health Impacts of Environmental Mycobacteria

http://cmr.asm.org/content/17/1/98.short

43. Molecular Survey of the Occurrence of *Legionella* spp., *Mycobacterium* spp., *Pseudomonas aeruginosa*, and *Amoeba* Hosts in Two Chloraminated Drinking Water Distribution Systems

http://aem.asm.org/content/78/17/6285.long

44. Functional Capacity of *Mycobacterium tuberculosis*-Specific T Cell Responses in Humans Is Associated with Mycobacterial Load

http://www.jimmunol.org/content/187/5/2222.full

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0037436#pone-0037436-g003

46. Tuberculosis screening and treatment compliance in human immunodeficiency virus patients

47. Correlation of *Mycobacterium Tuberculosis* Specific and Non-Specific Quantitative Th1 T-Cell Responses with Bacillary Load in a High Burden Setting

48. The Epidemiology of Tuberculosis in San Francisco

49. The Mycobacterium avium complex.

http://www.nature.com/icb/journal/v77/n4/full/icb199947a.html

50. Model for immune responses to *Mycobacterium avium* subspecies paratuberculosis in cattle [HTML] von asm.org

51. The Role of Nitric Oxide in Mycobacterial infections

52. Inhibition of Respiration by Nitric Oxide Induces a Mycobacterium tuberculosis Dormancy Program
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194188/

53. Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals
 PDF] von researchgate.net

54. Immune Restoration Diseases Reflect Diverse Immunopathological Mechanisms
 http://cmr.asm.org/content/22/4/651.full

55. Non-tuberculous mycobacteriallymphadenopathy.
 http://adc.bmj.com/content/72/2/165.full.pdf

56. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement
 http://erj.ersjournals.com/content/33/5/956.long

57. Mycobacterial disease, immunosuppression and acquired immunodeficiency syndrome
 http://adc.bmj.com/content/72/2/165.full.pdf

58. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis
 http://www.pfizerpro.com.co/sites/g/files/g10013231/f/publicaciones/203252~1.PDF

59. Glutathione deficiency is associated with impaired survival in HIV disease

60. Tuberculosis skin testing, anergy and protein malnutrition in Peru.
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912519/

61. Antibacterial resistance worldwide: causes, challenges and responses

62. The Challenge of Antibiotic Resistance

63. Evolution of Drug Resistance in Mycobacterium tuberculosis: Clinical and Molecular Perspective
 http://aac.asm.org/content/46/2/267.short

64. Treatment of tuberculosis in HIV-infected persons in the era of highly active antiretroviral therapy
65. Correlation of Mycobacterium Tuberculosis Specific and Non-Specific Quantitative Th1 T-Cell Responses with Bacillary Load in a High Burden Setting

66. 1993 Revised Classification System for HIV Infection and Expanded Surveillance Case Definition for AIDS Among Adolescents and Adults

http://cid.oxfordjournals.org/content/17/4/802.short

67. Specific T Cell Responses in Humans Is Associated with Mycobacterial Load

http://www.jimmunol.org/content/187/5/2222.full

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC104565/

69. Functional Capacity of Mycobacterium tuberculosis-Specific T Cell Responses in Humans Is Associated with Mycobacterial Load

http://www.jimmunol.org/content/187/5/2222.full

70. 1993 Revised Classification System for HIV Infection and Expanded Surveillance Case Definition for AIDS Among Adolescents and Adults

http://cid.oxfordjournals.org/content/17/4/802.short

71. Role of Glutathione in Macrophage Control of Mycobacteria

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152031/

72. HIV and Malnutrition: Effects on Immune System

Further information on “HIV”-inducing bacteria is available at:

http://www.ummafrapp.de/skandal/felix/pro/AIDBSe.pdf